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PREFACE 

The work reported herein was conducted by the Arnold Engineering Development Center 

(AEDC), Air Force Systems Command (AFSC) from January 1986 to November 1987 under 

Program Element 65807F, Project No. DB90EW, at the request of the AEDC Directorate 

of Technology. The results were obtained by Sverdrup Technology, Inc., AEDC Group, 

operating contractor for the propulsion test effort at the Arnold Engineering Development 

Center, AFSC, Arnold Air Force Base, Tennessee. The manuscript was submitted for 

publication on January 15, 1988. 
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1.0 INTRODUCTION 

Personnel at the Arnold Engineering Development Center routinely use X-ray radiography 
to inspect solid-propellant rocket motors. From the visual inspection of these data, potentially 
dangerous situations have been avoided by preventing the test of damaged rocket motors. 
However, radiography could also be used to determine rocket nozzle throat erosion (due 
to the high temperatures and dynamics of combustion, a rocket nozzle throat can become 
larger and affect thrust and specific impulse), provided that a method for timely X-ray analysis 
can be found. 

In 1985, a Quantex real-time digital image processor was purchased. With this device, 
X-ray data recorded on videotape (real-time radiography, RTR) could be analyzed moments 
after acquisition and could be used to highlight objects of interest within the motor case 
(for example, the nozzle throat) by frame averaging, filtering, and contrast stretching. Still, 
measuring rocket nozzle throat erosion during a test could not be accurately analyzed in a 
timely fashion because of the detailed inspection required per frame of videotape and the 
number of frames for a typical rocket motor firing. Therefore, this type of analysis could 
not be efficiently and accurately performed unless the process was automated by computer. 

The purpose of this study was to evaluate possible edge detection techniques that could 
be used to automate X-ray image an~ysis, providing more accurate and expedient results 
than from measurement by visual inspection. 

In Section 2.0 an overview of candidate edge detection procedures is presented, and the 
effectiveness of several detection techniques is presented in Section 3.0. Finally, conclusions 
and recommendations are presented in the final section of this report. 

2.0 DETECTION TECHNIQUES 

An object within an image will be observed as an intensity discontinuity. For example, 
in an image of the moon and surrounding sky, the moon will appear light and the sky as 
dark. As a row of image pixel intensities is scanned, the moon's edge will be located when 
a transformation from dark to light (or vice versa) intensity is noted. Gonzalez and Wintz 
(Ref. I) call this the "Gray-Level Thresholding" technique for edge detection. 

In the example just illustrated, a gray-level (image pixel intensity) threshold value is 
established, and once this threshold value is exceeded, the edge is established. In most instances, 
the threshold value will be determined based upon prior knowledge about the principal 
brightness regions or a percentage increase in intensity (Ref. l). 

5 
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Davis, Rosenfeld, and Weszka (Ref. 2) illustrate the example of thresholding with local 
pixel intensity averaging as shown in Fig. 1. Initially, image noise was reduced by local 
averaging. The object can then be identified from the region by setting a gray-level threshold 
value (in this case, the threshold was set at 32 on a scale of 0 for black to 63 for white), 
and requiring that everything below gray level 32 be part of the object. Figure 2 shows how 
a selected threshold can determine image object from background. In this figure, pixels with 
an intensity above 32 were selected as the object (the highlighted column of image data was 
plotted versus vertical pixel image location). 

The most common and historically earliest edge operator is the gradient (Ref. 3). Given 
a function f(x,y), the gradient of f at coordinates (x,y) is defined as the vector: 

G['F(x,y)] = 
( l )  

Gonzalez and Wintz (Ref. 1) indicate two important properties of the gradient, G[f(x,y): 

1. The vector G[f(x,y)] points in the direction of the maximum rate of change of 
the function f(x,y). 

. The magnitude of G[f(x,y)] equals the maximum rate of change of f(x,y) per unit 
distance in the direction of G, as given by: 

[~ 8f ~2+  ~ 8f ~2]1/2 
mag[G] = t~ ax ] ~ 8y ] j (2) 

For a digital image, the derivatives for the magnitude of [G] are used to detect image 
edges, and these are approximated by spatial differences. One technique for approximating 
the gradient magnitude is called the Roberts (Ref. 1) gradient, and is defined by: 

6[f(x,y)] = [[f(x,y)-f(x+ I, y+ I)] + [f(x+ l,y)-f(x,y+ l)]] (3) 

The Roberts mask is shown graphically in Fig. 3a. Given an image f(x,y), the m × n mask 
produces the gradient image G(x,y) by: 

G(x,y) = I: f(n,m) (4) 
S 

6 
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where S is the set of  all points in the mask. Figures 3b and 3c present the masks of  two other 
gradient approximations (that of  Prewitt and Sobel, Ref. 3). These other masks use more 

pixels in approximation of the gradient magnitude (f(x,y) is the center), and the Sobel procedure 

weights some pixels more heavily than others (the pixels located closer to f(x,y) are weighted 
more heavily). In fact, these modified operators (Prewitt and Sobel) tend to reduce the effects 

of noise (Ref. 3) and are found to be more useful in practical image analysis situations. 

The Laplacian of a two-variable function f(x,y) is defined as: 

82f ~ f  
V 2 f(x,y) = - -  + - -  (5) 

ax 2 ~x 2 

One version (Ref. 3) of the discrete Laplacian, L(x,y), is: 

L(x,y) = f(x,y)-  l/4*[f(x,y + 1)+ f (x ,y-  1)+ f(x + l ,y)+ f (x -  l,y)] (6) 

The discrete Lapladan has been used as edge detector much fike the discrete gradient. However, 
the discrete Laplacian has fallen into disfavor for edge detection because, as it is an 
aproximation to the second derivatives, noise in the image can become more enhanced than 

the image object itself (Ref. 3). 

Another technique for edge detection is pixel clustering as described by Tou and Gonzalez 
(Ref. 4). Image pixels are clustered into groups by specific characteristics (that is, location 
and gray-level intensity) and the image edges will be those pixels bordering the different groups 
(clusters). In general, the clustering criterion used will be based on the minimization (or 
maximization) of a certain performance index. One of the most often used indices is the 
sum of the squared errors index (used in the K-means concept to be described), which is defined 

as: 

Nc 
J = E E ix - roll 2 ( 7 )  

j f f i l  x~Sj 

where Nc is the number of cluster domains, Sj is the set of samples belonging to the jth 

domain, and 

1 ~ x (8) 
mj = Nj x~Sj 

where Nj represents the number of samples in Sj. 



AEDC-TR-87-39 

The K-means algorithm (Ref. 4) is a specific clustering technique used to divide an image 
into cluster groups as just described. The K-means concept used in this effort can be 
summarized as follows: 

Image data were averaged parallel to expected edge direction (to remove noise spikes without 
jeopardizing edge data; shown in Figs. 4a and b) and then arbitrarily divided into two clusters 
(A and B) as shown in Fig. 4c. A mean gray level value was calculated for each side, and 
the performance index was calculated by: 

Nc 
J = ~ E 11x - z 112 (9) 

jffil uSj 

where z is the respective mean gray level value, x is the set of all pixels in each cluster, and 
N is the total number of clusters. Then one pixel is transferred from the B to A cluster and 
the performance index recalculated and the procedure is repeated until the performance index 
is minimized (Fig. 5). 

The B cluster is defined to include most of the image points initially so the performance index 
will be a large number and decrease as the edge is approached. The expected trend in the 
performance index calculation as a function of the location of the line separating the clusters 
is shown in Fig. 5. The performance index will again increase toward its initial value when 
the edge is passed. 

Pattern classification by likelihood functions were the final edge detectors to be examined, 
and these were also presented by Tou and Gonzalez (Ref. 4). The Bayes classifier is such 
an edge detector which assigns image points to region classifications based on a probability 
function. Each point in the image is systematically assigned a probability that it belongs to 
a certain region or class, and then the probability is adjusted until an optimal grouping (lowest 

probability of error) is found. Unfortunately, some apriori knowledge must be known about 
the image before probability assignments can be made; this is discussed in later sections of 
this report. Like the K-means clustering routine, the image edges will be those pixels bordering 
the class groupings. 

In summary, the edge detectors investigated by this research were edge detection by 
thresholding, application of a gradient and Laplacian approximation, the K-means clustering 
technique, and the Bayes classifier. In the following sections, these techniques are compared 
using a single X-ray image, and the techniques providing the best detection results were 
compared on other images. 
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3.0 EDGE DETECTION EXPERIMENTS 

3.1 ROCKET NOZZLE THROAT SIMULATOR 

The techniques presented in Sec. 2.0 were evaluated with a reference data set so that 

meaningful comparisons could be made. X-ray nozzle erosion data (a prime objective for 

automated image analysis) was selected as the focus of attention. Actual nozzle erosion data 

(from a live rocket firing) could not be used since the true erosion characteristics were either 

not available or accurately known. Therefore, a nozzle simulator was designed and constructed 

such that, when X-rayed, data would be provided for exactly known "throat" or hole diameters 

(Fig. 6). 

The simulator was a 0.5-in.-thick plexiglass box containing a series of metal plates with 

varying diameter hole sizes. The box was approximately 24 in. long, and 15 in. in height 

and width. Solid lead or plexiglass plates could be added in front of or behind the varying 

throat sections to simulate a predetermined propellant loading (with the setup shown, the 

approximate simulated propellant loading was 11 in. from a 6-MeV source). Plate number 

4 (with a 1.015-in. hole) was used as a pretest "known"  measurement and plates 5 through 

14 had progressively larger holes to simulate nozzle throat erosion during testing (to reflect 

an actual rocket test, the change between hole sizes decreased as relative hole size increased). 

3.2 SETUP FOR DATA ACQUISITION 

The nozzle throat simulator was configured as shown in Fig. 7, and data were acquired 
(designated as setup 1A). A 6-MeV X-ray source provided 250 R at 1 meter from the source, 

and the source-to-object and source-to-camera distances were 12.7 and 14 ft, respectively. 

Then, an additional l/4-in.-thick sheet of lead was added in front of and behind the simulated 
throat section to simulate a propellant loading of 15 in. The image displayed by this setup 

(IB) is shown in Fig. 8. The final configuration was a 2 x magnification of the second setup 

and is presented in Fig. 9. This was accomplished by decreasing the source-to-model distance 

to 7 ft (setup IC). After image enhancement (by a four-frame moving average) and visual 

image inspection, more data were required because of the poor quality of the images generated 

(Fig. 8 and 9). Setups 2A and 2B are presented in Fig. 10. No propellant loading was simulated 

by these setups (no lead sheets were placed in front of or behind the simulated throat sections), 

and source-to-object and source-to-camera distances were the same as for setups IA and IC. 

These data were used to compare the different edge detector procedures as presented next. 

9 
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3.3 EXPERIMENTAL RESULTS 

Figure 1 la shows how an image area containing an edge was selected for edge detection 
analysis. The image area consisted of n rows and m columns or n × m total pixels. For all 
these analyses, the edge was parallel to the n direction as shown in the figure. These image 
data were averaged (to remove noise) along the m axis as shown in Fig. I lb. Since the edge 
was exactly in the n axis, no accuracy in detection was compromised because of noise reduction, 
and these data were input into the algorithms discussed earlier. 

An example of the effectiveness of the discrete Laplacian as an edge detector is presented 
in Fig. 12. This figure shows that no specific edge can be located after application of the 
operator (ideally this operator should present a data spike at an edge location fike the gradient 
example shown later). As discussed in Sec. 2.0, image noise can hamper edge detection by 
this technique; visual inspection of the image certainly confirmed that this image was not 
clear. Therefore, this technique was dismissied as a possible edge locater for this task. 

The Bayes classifier cannot be easily applied to these data because the technique requires 
a statistical base in both the object and background surrounding areas for probability 
calculations. For example, if background pixel intensities ranged from 0 to I00, then everything 
above I00 would likely be an object pixel. However in this image, no such pattern was 
recognized. Figure 13 shows the difficulty in assigning a graylevel intensity probability to 
either area (object or background). Both object and background intensities vary across 'the 
image (likely attributable to nonuniformity of illumination). Figure 14 shows how some 
graylevel intensities for this image have the same probability of being object as they do of 
being background (this figure also shows the ideal image histogram for this edge detection 
technique). Therefore, this procedure was not included as a candidate image edge detector. 

The gradient operator could be used as an edge detector for these data (this confirms 
previous experimentation by Walker, Gamble, and Smith, Ref. 5). The gradient 
approximations of Prewitt and Sobel were both tested and their effectiveness is shown in 
Figs. 15 and 16, respectively. Both operators indicate the same edge locations by the large 
data spikes at pixel locations 256 and 292, but the Sobel operator magnifies the intensity 
difference between the two edges (130 vs. 100). For this reason the Sobel operator was chosen 
for further study and was used to produce the results to be presented next. 

Gradient edge detection results from throat simulator data (setup 2A) are presented in 
Table 1. These results show that the gradient operation will measure a 2.95-in. hole to within 
12 percent (and the smaller holes more accurately). Although this error is greater than the 
expected pixel error (0.07 in. for a l-in. image characterized by 39 pixels), the measurement 
yielded a consistently higher result than the true hole size by approximately 6 percent. 

10 
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Edge detection by thresholding did not produce satisfactory results for these data (as shown 
for two hole sizes in Table 1). Figure 17 shows the graylevel intensity profile for the 1.7-in. 
hole. Because of the steep rise between pixel locations 214 and 254, the threshold calculation 
(1, 2, or 3 standard deviations) will indicate an edge well before the true edge pixel (No. 
254). If this condition were true for all hole profiles (but it is not), the result would still yield 
a satisfactory answer (because the l-in. reference measurement is located by the same procedure 
as the object to be measured, errors in edge location would cancel). To use this method, 
a relatively instantaneous increase or decrease must occur at or near the edge pixel (chance 
ramp intensity increases cause this method to yield upredictable or erroneous results). 
Therefore, this method was dismissed for further research. 

The K-means clustering technique did produce satisfactory edge detection results as shown 
in Table 1. These results indicated a measurement accuracy similar to that of the gradient; 
however, unlike the gradient operator, K-means results were influenced by the choice of image 
area selection. Figure 18 shows how two different image area selections will yield different 
results (pixel no. 219 might be selected as the edge for input of area no. 1 and no. 229 for 
input of area no. 2). Specifically, the 2.950-in. hole was measured to be 2.588 in. (12-percent 
error) and also 3.071 in. (4-percent error) by a different image area selection. Therefore, 
some standard for area selection had to be incorporated with this method as discussed in 
the following. 

Since the gradient procedure cannot be influenced by operator image area selection, its 
results were used to dictate the image area to be input the K-means procedure to improve 
pre.cision of measurement results. An equal number of pixels (nominally 15 - 20) on each 
side of the gradient result were input into the K-means routine, and the results obtained by 
incorporating the two methods are presented in Table 2. This table also shows the results 
obtained after image magnification (a l-in. object in data set 2B was characterized by 68 
pixels) and from degraded image analysis (added material through which the X-rays had to 
pass; setups IA and IC as presented in Sec. 3.2). In all cases but one, the results obtained 
from the combined procedures were more accurate than those from either method alone. 
In addition, justification has been established for the image area analyzed by the K-means 
procedure (the single instance shown where measurement by the K-means procedure alone 
produced a better measurement than the combined methods must be disregarded since no 
justification existed for image area selection, and another area could have just as easily been 
selected, producing opposite results). These results show that the largest error in measuring 
any of these objects was 0.14 in., regardless of image quality and/or magnification. 

Table 3 presents measurement results obtained by visual inspection of plotted image data 
compared to those produced by the combined techniques just described. These results are 
approximately the same for both methods; however, it would be impossible to visually analyze 

11 
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many frames of data in a timely fashion (subsequently, an automated method for the task 
has been established). 

4.0 CONCLUSIONS 

The goal of this study was to evaluate computer image measurement techniques so that 
accurate measurement of rocket nozzle throat erosion could be automated for timely analysis. 
The results from this study are summarized as follows: 

1. For these data, the Laplacian function, thresholding technique, and Bayes classifier 
could not be used to detect image edges. 

. The gradient function allowed image edges to be located without any operator 
interaction. The gradient produced excellent results for the good image data 
(reading consistently high, approximately 6 percent), but poor results on the 
degraded image (errors in measurement ranging from 11 to 21 percent). 

. The K-means algorithm produced satisfactory results if image area selection for 
analysis could be justified. The gradient function was used in combination with 
this method to justify data area selection, and the largest error in measurement 
for these experiments was 0.14 in., regardless of image quality and/or 
magnification. 

. Computer image measurement was not a significant improvement over operator 
image inspection in terms of accuracy for a single frame of videotape (assuming 
a great deal of time is allowed for visual inspection of image data). 

From the results of this study, the following recommendations are made: 

. The combined gradient and K-means techniques should be used to measure other 
objects (besides the throat simulator) with exactly known dimensions (this will 
further test the analysis techniques). 

. Experiments should be performed with image pre-processing (high-pass filtering 
and contrast stretching). Prior to measurement analysis, only image processing 
by frame averaging was performed because of limitations in image processor 
availability. 

. Consideration should be given to motor vibration during an actual firing. Can 
the prefire reference always be used as a standard unit of measure if the motor 
is shifting because of vibration? 

12 
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These measurement techniques were designed to be a two-dimensional analysis. 
Since, for instance, rocket motor throat erosion will likely not be symmetric about 
the nozzle, a three-dimensional technique is preferred. Efforts to initiate three- 

dimensional image measurement capability should be based on the results 

previously presented. 
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Note:  (a) Original black-and-white picture. 
(b) Result of locally averaging (a), 

using 11-by-ll neighborhood at 
each point. 

(c) Result of thresholding (b) at 
32 (on gray scale of 0 to 63). 

Figure 1. An example of averaging and thresholding. 
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Figure 3. Different techniques for approximating the gradient of an image. 
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Figure 4. Use of the K-means algorithm. 
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Figure 4. Concluded. 
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Figure 6. Overview of nozzle throat simulator. 
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Figure 8. Computer image of simulator. 
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Figure 9. Object magnified by 100 percent. 
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Figure I0. Data acquisition setup no. 2. 
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(Fig. l l a )  

m 

132 133 I33 130 

132 131 130 129 

131 132 134 135 

131 134 134 133 

136 134 133 133 

136 136 135 132 

133 132 135 135 

138 138 138 137 

138 139 141 140 

140 141 140 139 

144 142 141 13g 

132 134 136 139 

144 145 145 144 

142 142 142 142 

145 146 147 I45 

141 141 141 141 

145 I47 148 146 

146 144 I43 141 

148 147 147 146 

142 144 145 145 

144 145 146 145 

148 148 I49 148 

146 145 144 142 

151 150 150 150 

158 160 163 162 

165 167 167 167 

172 172 172 172 

172 173 174 178 

177 176 177 178 

177 178 179 182 

186 186 185 184 

182 184 186 I88 

b. Data from selected a r e u  

Figure 11. Concluded. 
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Figure 13. Variance in plate-to-plate graylevel intensity. 
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Figure 18. Influence of  area selection on K-mean results. 



AEDC-TR-87-39 

Table 1. Edge Detection Results on a Good Image 

Data Set 2A 

Known Hole 
Size 

2.950 in. 

1.500 in. 

1.700 in. 

1.808 in. 

Thresholding 

Computed 
Results 

- 1 . 5  in. 

-0 .9  in. 

Error, 
percent 

- 5 0  

-40  

Gradient (Sobel) 

Computed 
Results 

3.214 in. 

1.579 in. 

1.804 in. 

Error, 
percent 

+8.9  

+5.2 

+5.8  

+6.0 

K-Means* 

Computed 
Results 

2.588 in. 

1.522 in. 

1.649 in. 

1.917 in. 1.700 in. 

Error, 
percent 

- 12.2 

+ 1.5 

-3 .0  

-5 .5  

* Results dependent on amount of data analyzed (in measuring the 2.950-in. hole, computed 
results ranged from 2.00 to 3.07 in., depending upon image data selected). 
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Table 2. Edge Detection for Various Test Setups 

taa 
O~ 

True Hole Data Set 2A Data Set 2B Data Set IA Data Sea IA Data Set IC 
Size, in. 

2.950 

! .500 

Gradient 
(Alone) 

3.214 
(+ 8.9%) 

1.579 
(+5.3%) 

K-Means 
(Alone) 

2.588 
( -  12.3%) 

1.522 
(+ 1.5%) 

Combined 

3.071 
(+4.1%) 

1.560 
( + 4.0%) 

Combined 
(Magnified 

Object) 
3.060 

(+3.7%) 

1.373 
( -8 .5%) 

Combined 
Degraded 

Image) 

2.873 
( -2 .6%)  

1.486 
( -  1.4%) 

Gradient Alone 
(Degraded 

lmaae) 

3.276 
(+ lie/e) 

(Not Measured) 

Combined 
Magnified Object 
(Degraded_ lmA~e) 

1.439) 
( -4 .1%)  

1.700 !.804 1.649 1.718 1.702 !.838 2.050 1.614 
(+ 6.1 e/o) ( -  3.0e/0) (+ 1.1%) (+0.1%) (+8.1%) (+21%) ( -5 .0%) 

1.808 1.917 1.700 1.848 1.851 1.720 2.140 1.809 
(+6.0%) ( -  6.0e/o) (+ 2.2e/e) (+2.4%) ( -4 .9%)  (+ 18%) (0e/o) 

* Out of field of view after image magnification. 
Note: ( ) indicates measurement error. 
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Table 3. Computer vs. Visual Results 

True Hole 
Size, in. 

Data Set 2A 

Gradient and 
K-Means Combined 

Results from 
Visual Inspection 

2.950 3.071 2.948 
(+4.1%0) (O%o) 

1.500 1.560 1.450 
(+4.0%0) ( -3 .3%) 

1.700 1.718 1.619 
(+1.1O7o) (-4.8°70) 

1.808 1.848 1.740 
(+2.2%) ( -3 .8%) 

Note: ( ) indicates measurement error. 
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